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Abstract. In this paper, we analyse the celebrated Haken-Kelso-Bunz (HKB) model, describing the dynam-4
ics of bimanual coordination, in the presence of delay. We study the linear dynamics, stability,5
nonlinear behaviour and bifurcations of this model by both theoretical and numerical analysis.6
We calculate in-phase and anti-phase limit cycles as well as quasi-periodic solutions via double7
Hopf bifurcation analysis and centre manifold reduction. Moreover, we uncover further details8
on the global dynamic behaviour by numerical continuation, including the occurrence of limit9
cycles in phase quadrature and 1-1 locking of quasi-periodic solutions.10
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1. Introduction. Human motor coordination is the result of complex interactions, at13

many different time and length scales. One established way to model bimanual coordina-14

tion is to assume that the fingers or limbs of experimental subjects are oscillators, capable15

of generating self-sustained periodic motion. Within this approach, the focus is on under-16

standing the observed relative phase ϕ of the two oscillators [22]. Stable in-phase (ϕ = 0)17

synchronisation is usually found to be the simplest to maintain [6], [21], while stable anti-18

phase (ϕ = π) motion [5] and stable phase-lagged states can also occur [9], [12].19

The Haken-Kelso-Bunz (HKB) coupled oscillator model [15, 23] was originally devel-20

oped to explain these different types of bimanual synchronisation, and the ways in which21

they can occur. Since then it has become the bedrock of all subsequent research in this22

area.23

In more recent times, the HKB model has found application elsewhere. Schizophrenia24

is a mental illness with high prevalence and a scarcity of satisfactory treatments. This has25

inspired a drive within the research community [35] to develop methods for early diagnosis26

and preventative intervention.27

The mirror game, where two individuals mirror each other’s movements, is considered28

to be a powerful tool for studying coordination dynamics [29]. In experiments based on this29

principle, Varlet et al. [37] identified peculiar characteristics of the motion of schizophrenic30
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patients performing simple synchronisation tasks with healthy individuals. In one version of31

the mirror game, an HKB-driven virtual player [39] participates with a human partner. The32

analysis of the resulting motion could form the basis of a diagnostic tool for schizophrenia33

[26], where motor abnormalities are one of the first indicators of the illness.34

In their work, Varlet et al. [37] pointed out that the standard HKB coupled oscillator35

model [15] does not accurately describe the observed dynamics of schizophrenia patients36

unless a delay is included in the coupling term. The resulting delayed HKB model [2, 36,37

38, 40] is the subject of this paper. Our goal is to inform further research into human38

coordination dynamics where delay is especially prevalent. In particular, we seek to aid39

the understanding of the delayed HKB equation by providing insight into the underlying40

dynamic behaviour of the system. Varlet et al. [37] suggest that the delayed HKB equation41

may be suitable to capture the mirror game whereas the numerical approaches used by42

S lowiński et al. [34] indicate that the delayed HKB equation may have limited relevance to43

experimentally observed behaviour. We aim to help clarify the extent of the utility of the44

delayed HKB model1.45

Our paper is organised as follows. Section 2 describes the delayed HKB model of46

human motor coordination. Section 3 presents linear stability analysis that is verified by47

numerical results in Section 4. The nonlinear dynamics of the delayed HKB model are48

analysed, by centre manifold reduction, in Section 5. We compare these theoretical results49

with numerical continuation in Section 6.50

2. The delayed HKB model. The delayed HKB model [2, 36] is given by51

(2.1)

ẍ1(t) + ω2x1(t) =
(
γ − αx21(t) − βẋ21(t)

)
ẋ1(t)

+
(
a+ b (x1(t) − x2 (t− τ1))

2
)

(ẋ1(t) − ẋ2 (t− τ1)) ,

ẍ2(t) + ω2x2(t) =
(
γ − αx22(t) − βẋ22(t)

)
ẋ2(t)

+
(
a+ b (x2(t) − x1 (t− τ2))

2
)

(ẋ2(t) − ẋ1 (t− τ2)) .

52

This model is a pair of coupled second-order delay differential equations (DDEs). The53

variables x1(t) and x2(t) represent the amplitudes2 of the individual oscillators at time t.54

The parameter γ is the linear damping coefficient and α, β are nonlinear damping coeffi-55

cients, also known as the Van der Pol and Rayleigh coefficients, respectively. Parameter56

a is the linear coupling coefficient and b is the nonlinear coupling coefficient. The pacing57

frequency ω is physically positive3. The time delays τ1, τ2 arise from cognitive and physi-58

ological processes, typically caused by detection and actuation, which can be different for59

each oscillator. In this paper, we take these two time delays to be equal: τ1 = τ2 =: τ . We60

1We note that in the analysis by S lowiński et al., various parameters are fixed at values found by Kay
et al. [20] using experiments studying the hand motion of four participants. However, Peper et al. [30]
suggest that not all limbs can be modelled in the same way which motivates a broader investigation of the
parameter space, as presented here.

2In the original HKB paper [22], x1(t) and x2(t) are the angular displacements of each finger, with
direction defined symmetrically so that x1(t) = x2(t) corresponds to in-phase motion.

3In [22], pacing was provided by a metronome.

This manuscript is for review purposes only.



THE EFFECTS OF DELAY ON THE HKB MODEL OF HUMAN MOTOR COORDINATION 3

remark that the number of parameters in the delayed HKB model (2.1) could be reduced61

by introducing the scaled time t̃ = ωt, however, hereinafter we rather use functions of t for62

easier physical interpretation.63

The delayed HKB model (2.1) has discrete symmetries in its structure: x1 and x2, as64

well as x1 and −x2 are interchangeable. These symmetries will ultimately result in the65

existence of in-phase and anti-phase periodic solutions.66

We begin our analysis of the delayed HKB model (2.1) by first considering the linearized67

version of the system, given4 by68

(2.2)
ẍ1 + ω2x1 = γẋ1 + a (ẋ1 − ẋ2(t− τ)) ,

ẍ2 + ω2x2 = γẋ2 + a (ẋ2 − ẋ1(t− τ)) .
69

We shall show that these equations provide us with an explanation of the fundamental70

structures observed in numerical computations [36].71

In [8, eq. (5)], it was shown that the linear HKB equations in the absence of delay72

could be simplified when written in terms of normal modes. We adopt the same approach73

here, by setting η(i) = x1 + x2 and η(a) = x1 − x2, corresponding to in-phase motion and74

anti-phase motion respectively, so that (2.2) becomes75

(2.3)
η̈(i) + ω2η(i) = γη̇(i) + a

(
η̇(i) − η̇(i)(t− τ)

)
,

η̈(a) + ω2η(a) = γη̇(a) + a
(
η̇(a) + η̇(a)(t− τ)

)
.

76

We consider the stability of the trivial solutions (equilibria) η(i,a) = 0 of (2.3).77

• If both η(i,a) = 0 are stable, then the equilibrium x1 = x2 = 0 of (2.2) must be78

stable and we will see no oscillations.79

• When η(i) = 0 is unstable and η(a) = 0 is stable, we expect to find stable in-phase80

limit cycles in the full system (2.1).81

• When η(i) = 0 is stable and η(a) = 0 is unstable, we expect to find stable anti-phase82

limit cycles in the full system (2.1).83

Such limit cycles arise because of a Hopf bifurcation, which occurs when changing84

parameters of the system. If the leading eigenvalues λ cross the imaginary axis in pairs,85

λ = ±iν where ν ̸= 0, then, according to an infinite dimensional version of the Hopf86

Bifurcation Theorem [17], there will be a Hopf bifurcation when the derivative of the87

eigenvalue λ with respect to a parameter evaluated at λ = iν is non-zero.88

Equations (2.3) are uncoupled. Since they only differ by one sign, we can carry out an89

analysis on the linear delayed HKB model, given by90

(2.4) η̈ + ω2η = γη̇ + a (η̇ ∓ η̇(t− τ)) ,91

where η = η(i) corresponds to the minus sign in the last term and η = η(a) corresponds to92

the plus sign.93

4To simplify notation, we do not denote the dependence of x1 and x2 on time, unless the delay is
involved.
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Figure 3.1. A feedback control system block diagram for the linear delayed HKB model (3.1). The
damped harmonic oscillator on the left-hand side of (3.1) is within the dotted section.

3. Stability charts for the linear delayed HKB model. In this section we produce94

stability charts in the (a, τ), (γ, τ) and (γ, a) planes, for arbitrary values of ω, of the trivial95

solutions of (2.4). These charts will also be used to explain structure of the bifurcation dia-96

gram for the nonlinear delayed HKB model (2.1) in the (a, τ) plane produced by S lowiński97

et al. [36, Figure 2(a)].98

Equations (2.4) will be very familiar to control engineers when written in the form:99

(3.1) η̈(t) − (γ + a)η̇(t) + ω2η(t) = ∓aη̇(t− τ),100

The left-hand side of (3.1) represents damped simple harmonic motion, with damping101

coefficient5 −(γ + a). The right-hand side is a delayed harmonic oscillator with feedback102

gain ∓a, which changes the damping coefficient −(γ + a). The feedback control system103

block diagram is shown in Figure 3.1.104

In the absence of delay, the in-phase and anti-phase trivial solutions η(i,a) = 0 have two105

lines of Hopf-bifurcations in (a, γ) parameter space; HBI : γ = 0 and HBA : 2a + γ = 0,106

see [8, Figure 1]. Bistable regions of these normal modes are also seen.107

In the presence of delay, a stability analysis of the equilibrium solution η = 0 to (3.1)108

is more complicated, but well established [3, 18, 25]. Details are given in Appendix A.109

For the stability chart in (a, τ) parameter space, shown in Figure 3.2, we follow [36] and110

set6 γ = 0.641, ω = 2.6π. Regions where η(i) = 0 is stable are shaded blue, regions where111

η(a) = 0 is stable are shaded red. Both η(i,a) = 0 are stable in the purple regions. The112

eigenvalues of the in-phase and anti-phase normal modes are denoted by λ(i,a) respectively.113

Stability boundaries occur when the rightmost eigenvalues are pure imaginary: λ(i,a) =114

iν(i,a). From (A.6), the sign of the quantity ρτ = Re
(
∂λ
∂τ

∣∣
λ=iν

)
indicates how the stability115

of η = 0 changes as τ increases.116

5We shall consider cases when −(γ + a) ≷ 0.
6We reproduced their results by setting ω = 2π(1.3) = 2.6π, suggesting that they took ω = 1.3[Hz].
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Figure 3.2. Stability chart in (a, τ) parameter space for the normal modes of the linear delayed HKB
equation (3.1) with γ = 0.641, ω = 2.6π. Regions where η(i) is stable are shaded blue, regions where η(a)

is stable are shaded red. The normal modes η(i,a) are both stable in the purple regions and both unstable in
the white regions.

In the absence of delay, along the line τ = 0 in Figure 3.2, η(a) = 0 is stable (and117

η(i) = 0 is unstable) for a < −γ/2 = −0.3205, in agreement with the stability boundary118

HBA : 2a+ γ = 0 in [8, Figure 1]. We observe finite amplitude in-phase limit cycles in the119

full equations (2.1) with τ = 0 [1, 8].120

As τ increases for fixed a < −γ/2 = −0.3205, initially η(a) = 0 remains stable. Then121

we observe a number of stability switches. η(i) = 0 becomes stable on crossing the lowest122

blue line in Figure 3.2. When both η(i,a) = 0 are stable (in the purple regions), we have123

the case when x1 = x2 = 0 is stable. So, small but finite values of the delay τ eliminate the124

finite amplitude in-phase limit cycles in (2.1). On crossing the lowest red line in Figure 3.2,125

η(a) = 0 loses stability. We expect to see finite amplitude anti-phase limit cycles in the126

full delayed HKB model (2.1) in the blue region around τ = 0.4 for a < −γ/2 = −0.3205.127

Similar observations can be made as we increase τ further in Figure 3.2.128

For the stability chart in (γ, τ) parameter space, shown in Figure 3.3, we set a = −2129

and ω = 2.6π [36]. The colour scheme and the definitions of λ(i,a) and ρ
(i,a)
τ are the same130

as those in Figure 3.2. In Figure 3.3, along the line τ = 0, we see that η(a) = 0 is stable131

(and η(i) = 0 is unstable) for γ < −2a = 4, in agreement with the stability boundary132

HBA : 2a+ γ = 0 in [8, Figure 1]. We see further stability switches as τ increases.133

Figures 3.2 and 3.3 show a periodic nature in the stability curves as τ increases. We can134

explain this observation as follows. In (A.15), we show that when τ = nπ
ω , n ∈ Z, stability135

boundaries are given by γ = a(±(−1)n − 1) for ω ̸= 0. When n is even, that means the136

boundaries are γ = 0 for η(i) and γ + 2a = 0 for η(a). When n is odd, the boundaries are137
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Figure 3.3. Stability chart in (γ, τ) parameter space for the normal modes of the linear delayed HKB
equation (3.1) with a = −2, ω = 2.6π. The colour scheme is the same as that in Figure 3.2.

swapped and given by γ + 2a = 0 for η(i) and γ = 0 for η(a).138

Stability charts in the (γ, a) plane are illustrated in Figure 3.4, showing how the stability139

boundaries evolve as τ increases from 0 to π/ω. At τ = 0 the in-phase and anti-phase140

stability curves are γ = 0 and 2a + γ = 0 respectively. As τ increases, these boundaries141

deform and cross, eventually switching when τ = π/ω, as expected.142

4. Comparison with numerical stability charts. Up to now, we have analysed the143

linear delayed HKB (2.2), which is valid for small amplitudes. However, most experiments144

are performed in the nonlinear regime. The study by S lowiński et al. [36] is the only145

bifurcation analysis of the nonlinear delayed HKB model (2.1), but it is entirely numerical,146

and does not consider the linearised equations. These authors fixed the linear damping147

coefficient γ = 0.641 and the nonlinear damping coefficients α = 12.457, β = 0.007905148

[20]. Variation of the other parameters was considered within the range of experimentally149

observed values. We follow these authors with the same choice of parameters, with ω =150

2π(1.3) = 2.6π.151

Figure 3.3 shows the analytic stability curves in (γ, τ) parameter space. Our own152

numerical continuation of the Hopf bifurcations using DDE-Biftool [13, 33] shows exact153

agreement between the numerical and analytic curves (not shown). Since the analytic154

curves lie exactly on the numerical curves, the generic Hopf bifurcation curves can be155

deduced exactly from analysis of the linear system (2.2).156

Figure 3.3 shows that the stability curves satisfy 0 < γ < 4. This can be explained157

using the analysis in Appendix A. Conditions (A.5) for eigenvalues to touch or cross the158

This manuscript is for review purposes only.
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Figure 3.4. Stability chart in (γ, a) parameter space for the normal modes of the linear delayed HKB
equation (3.1), for different values of τ , with ω = 2.6π. The colour scheme is the same as that in Figure 3.2.
The stability chart with τ = 0 was given in [8, Figure 1], where regions of instability were highlighted. Within
the parameter ranges illustrated, the stability boundaries for τ = π

ω
are the same as those for τ = 0, but

with the in-phase and anti-phase curves swapped.

imaginary axis can be combined to give γ(γ + 2a) < 0. Therefore, for a = −2 as in159

Figure 3.3, we have 0 < γ < 4.160

S lowiński et al. [36, Figure 2(a)] carried out a comprehensive numerical analysis of the161

full problem (2.1), using DDE-Biftool. They found many bifurcations in7 a > 0, and162

torus bifurcations in a < 0.163

5. Applying centre manifold theory to the delayed HKB equation. A standout ob-164

servation of Figures 3.2 and 3.3 is the crossing of Hopf bifurcation curves. At such points165

we expect to find double Hopf (or Hopf-Hopf) bifurcations, as two pairs of eigenvalues cross166

the imaginary axis at the same time.167

We now revert to the full problem (2.1), and investigate the double Hopf points in168

(a, τ) parameter space, unfolding the in-phase and anti-phase periodic orbits as parameter169

values are varied nearby. We use centre manifold theory, with symbolic computations in170

MapleTM based on the tutorial codes given in [7]; the details of this calculation are outlined171

in Appendix B.172

Using (A.9) and (A.10), we find four double Hopf bifurcations at (a, τ) = (ac, τc) for8173

a ∈ [−10, 10], τ ∈ (0, 2], labelled HH1 to HH4 in Table 5.1, along with values for the critical174

7Experiments tend to suggest that a < 0.
8This range was given in Figure 3.2.
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eigenvalues λ(i,a) = iν(i,a).175

ac τc ν(i) ν(a)

HH1 -0.68609 0.19214 7.83301 8.51761

HH2 -0.83431 0.57621 8.58402 7.77241

HH3 -1.33683 0.95920 7.61733 8.75879

HH4 -3.37162 0.95457 7.23890 9.21666

Table 5.1
Parameter values for the double Hopf bifurcations in the (a, τ) plane, with γ = 0.641, ω = 2.6π.

The normal form of the double Hopf bifurcation can be expressed in polar coordinates,176

with amplitudes r1, r2 (B.30) and phase angles φ1, φ2 (B.31); see also [28]. In (B.30), r1177

corresponds to eigenvalue iν(i), and r2 corresponds to eigenvalue iν(a). So, r1 ̸= 0, r2 = 0178

steady states of (B.30) correspond to in-phase limit cycles, and r1 = 0, r2 ̸= 0 corresponds179

to anti-phase limit cycles.180

Table 5.2 gives values for the normal form coefficients ajk and parameters ρjk, used181

in the expressions (B.32) for the unfolding parameters, for each of the four double Hopf182

points. Note that the normal form coefficients can also be computed for a wide class of183

time delay systems numerically using the approach proposed in [4] that was implemented184

as part of DDE-Biftool. In the sequel, we explore the point HH1 in detail.185

5.1. Phase portraits. The normal form for the double Hopf bifurcation (B.30) gives186

rise to distinct structurally stable phase portraits in different regions of parameter space187

about the double Hopf points. To see this, we look at the possible steady states of (B.30),188

(5.1)

1 : (r1, r2) = (0, 0),

2 : (r1, r2) =

(√
− b1
a11

, 0

)
,

3 : (r1, r2) =

(
0,

√
− b2
a22

)
,

4 : (r1, r2) =

(√
a12b2 − a22b1
a11a22 − a12a21

,

√
a21b1 − a11b2
a11a22 − a12a21

)
.

189

According to Guckenheimer and Holmes [14], there is a partition of parameter space190

into regions with topologically different phase portraits in which different combinations of191

steady states exist simultaneously. The lines separating these regions are given by192

(5.2)

Line 1: b1 = 0,

Line 2: b2 = 0,

Line 3: a12b2 − a22b1 = 0,

Line 4: a21b1 − a11b2 = 0.

193
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a11 a12 a21 a22 ρ11 ρ12 ρ21 ρ22

HH1 -1.45930 -2.98167 -3.17291 -1.62071 0.41422 -2.53782 0.44713 2.99651

HH2 -1.57279 -3.07152 -2.88168 -1.40684 0.25537 3.09705 0.24324 -2.58847

HH3 -1.05553 -2.17940 -2.28045 -1.17705 0.04553 -2.04607 0.03689 2.44805

HH4 -0.61111 -1.29100 -1.31866 -0.69641 -0.00656 -1.18880 -0.01192 1.42407

Table 5.2
The values of the normal form coefficients and parameters ρjk, used in the expressions for the unfolding

parameters, for each of the double Hopf bifurcation points in the (a, τ) plane. Fixed parameter values are
α = 12.457, β = 0.007095, γ = 0.641, ω = 2.6π, b = 1.

Lines 1-4 divide parameter space into six regions, labelled I-VI in Figure 5.1. There194

is excellent agreement near HH1 between lines 1 and 2 in (5.2) and the bifurcation curves,195

taken from Figure 3.2.196

The stability of the steady states 1 – 4 is found by evaluating the Jacobian J of197

(B.30), given by,198

J =

[
J11 J12
J21 J22

]
,

J11 = 3a11r
2
2 + a12r

2
2 + ρ11 (a− ac) + ρ12 (τ − τc) ,

J12 = J21 = 2a21r1r2,

J22 = a21r
2
1 + 3a22r

2
2 + ρ21 (a− ac) + ρ22 (τ − τc) .

(5.3)199

200

The analysis leads to the phase portraits in Figure 5.2. Let us consider the qualitative201

changes in these phase portraits as we move counter-clockwise around the double Hopf202

point HH1 in Figure 5.1. In region I, only the zero equilibrium 1 steady state exists.203

In agreement with analysis in Section 3, this is stable. A Hopf bifurcation gives rise204

to the stable in-phase limit cycle 2 in region II, and the zero equilibrium becomes a205

saddle. Moving into region III, an unstable anti-phase limit cycle 3 is born and the zero206

equilibrium becomes a source. Region IV is a region of bistability of the in-phase and anti-207

phase limit cycles, together with an unstable quasi-periodic orbit 4 . This quasi-periodic208

orbit then collides with the in-phase limit cycle 2 to give the phase portrait in region209

V, where the anti-phase limit cycle 3 is the only stable steady state. In region VI, the210

in-phase limit cycle no longer exists, leaving only the stable anti-phase limit cycle 3 and211

the unstable equilibrium at the origin 1 . This limit cycle disappears at a Hopf bifurcation212

as we move back into region I, and the equilibrium at the origin 1 regains stability.213

5.2. One-parameter bifurcation diagrams. Apart from obtaining different phase por-214

traits around the double Hopf bifurcation, the normal form (B.30) allows us to plot one-215

parameter bifurcation diagrams to illustrate the unfolding of the in-phase and anti-phase216

solutions. These provide a useful means of comparison with numerical results. Figure 5.3217
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Figure 5.1. Regions with qualitatively different phase portraits in the vicinity of double Hopf point HH1:
(a, τ) = (−0.68609, 0.19214). The blue curve corresponds to Re(λ(i)) = 0 and the red curve to Re(λ(a)) = 0.
Lines 1-4 are defined by (5.2). Fixed parameter values are α = 12.457, β = 0.007095, γ = 0.641, ω =
2.6π, b = 1.

illustrates the one-parameter bifurcation diagrams in a (with τ = 0.19214 from Table 5.1),218

and τ (with a = −0.68609) showing how the double Hopf bifurcation HH1 unfolds. Nu-219

merical results obtained from DDE-Biftool are compared with the analytic results given220

by (5.1). The bifurcation diagrams in parameter a show transitions between regions I and221

IV, and the birth of the two stable limit cycles. In contrast, the bifurcation diagrams in222

τ show transitions between regions II and VI, showing the destruction of one type of limit223

cycle, followed by the birth of the other.224

The centre manifold analysis is valid for small amplitudes near the double Hopf bifur-225

cation point HH1. Figure 5.3 shows that there is strong agreement between the analytic226

and numeric solutions within the expected parameter range. It only shows stable solutions.227

Other solutions will be discussed in the next section.228

In Appendix C, we give a brief discussion on the possibility, or otherwise, of internal229

resonances in this problem.230

This manuscript is for review purposes only.



THE EFFECTS OF DELAY ON THE HKB MODEL OF HUMAN MOTOR COORDINATION 11

r1

r2 I

r1

r2 II

r1

r2 III

r1

r2 IV

r1

r2 V

r1

r2 VI

1 1 2 1 2

3

1 2

3 4

1 2

3

1

3

Figure 5.2. Possible phase portrait topologies around double Hopf point HH1. Sources, sinks and saddles
are illustrated using red, green and blue dots respectively. Roman numerals correspond to the regions in
Figure 5.1. Equilibria 1 − 4 are given in (5.1).

6. Numerical results. To further analyse the global behaviour of the nonlinear delayed231

HKB model (2.1), we conducted extensive numerical bifurcation calculations9. The results232

are summarised in Figure 6.1. We computed branches of equilibria and limit cycles using233

DDE-Biftool [13] and branches of quasi-periodic orbits using the Matlab tool introduced234

in [11] and further developed in [28].235

We analysed the stability of the trivial equilibrium, detected Hopf bifurcations, and con-236

tinued the branches of Hopf bifurcation in two parameters, a and τ ; see the teal branches10237

in Figure 6.1(a). The two branches give rise to the in-phase and anti-phase limit cycles,238

and their the intersection is the double-Hopf bifurcation point HH1 at (a, τ) = (ac, τc) =239

(−0.68609, 0.19214). Then, we selected a delay value τ = 0.1926 close to HH1 and continued240

the in-phase and anti-phase limit cycles by varying parameter a; these are the black and241

purple curves, respectively, in Figure 6.1(b), which lie almost on top of one another and242

above the red quasi-periodic curve11.243

Then, we considered the stability of the in-phase and anti-phase limit cycles. We244

detected torus bifurcations (orange points) and pitchfork bifurcations (green points), asso-245

ciated with a pair complex and one real characteristic multipliers located on the unit circle246

of the complex plane, respectively. These bifurcations were continued in two parameters247

as shown by the orange and green branches in Figure 6.1(a).248

9Code used to obtain these results is available at https://github.com/DomboZoli/
Quasi-periodic-package.

10These are the red and blue branches in Figure 5.1.
11The amplitude measure on the vertical axis is the “root-mean-square value” over the period T :

∥x∥ =
√

1
T

∫ T

0
(x2

1(t) + x2
2(t))dt.
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Figure 5.3. One-parameter bifurcation diagrams in a (with τ = 0.19214 from Table 5.1), and τ (with
a = −0.68609) for the limit cycles born at HH1. Numerics (n) are compared with the analytic (a) solutions
obtained using the normal form given in (B.30). All solutions are stable at the bifurcation point. Fixed
parameter values are α = 12.457, β = 0.007095, γ = 0.641, ω = 2.6π, b = 1.

The pitchfork bifurcations give rise to additional limit cycles. These solutions are249

plotted in blue in Figure 6.1(c) as a function of the phase shift12 between the states x1 and250

x2. The phase shift of the limit cycles changes continuously and sweeps across the entire251

[0◦, 360◦] domain. The diagram repeats every 360◦ along the phase shift axis.252

When the phase shift of these additional limit cycles reaches approximately 90◦ or 270◦,253

the branch splits into circular branches of limit cycles, where the associated phase shift was254

observed to be approximately constant 90◦ or 270◦, respectively. We refer to these as limit255

cycles in phase quadrature. The circular branches of these solutions can be seen in Figure256

6.1(b). The in-phase, anti-phase and phase quadrature limit cycles themselves are depicted257

in Figure 6.1(d) for a = −0.2. For these phase quadrature limit cycles, we further observed258

that the time period is about 4 times the delay, and therefore a special type of symmetry259

with x1(t) ≈ x2(t− τ) or x2(t) ≈ x1(t− τ) holds, respectively.260

The torus bifurcations (orange points in Figure 6.1) give rise to two branches of quasi-261

12Based on the location of the maximum points of x1(t) and x2(t).
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Figure 6.1. Numerical bifurcation diagrams of the delayed HKB system (2.1). (a) Two-parameter
diagram in the (a, τ) plane with branches of Hopf, torus, pitchfork bifurcation and 1-1 locking. (b) One-
parameter diagram of limit cycles and quasi-periodic orbits against parameter a for τ = 0.1926 (solid line:
stable solution, dashed line: unstable solution). (c) One-parameter diagram also indicating the phase shift
between x1 and x2. (d) In-phase, anti-phase, and phase quadrature periodic orbits at a = −0.2. Fixed
parameter values are α = 12.457, β = 0.007095, γ = 0.641, ω = 2.6π, b = 1.

periodic orbits (red dashed curves)13. The two branches are identical except that x1 and262

x2 are interchanged14.263

The quasi-periodic orbits are associated with two angular frequencies, υ1 and υ2, that264

are close to the frequencies related to the double Hopf point HH1. Accordingly, quasi-265

periodic orbits are described as a surface (a torus) parameterised by two dimensionless266

time variables θ1 ∈ [0, 2π] and θ2 ∈ [0, 2π] associated with υ1 and υ2. The quasi-periodic267

branches are indicated with their phase shift15 in Figure 6.1(c).268

Finally, as the quasi-periodic branch is continued, multiple 1-1 locking states, coloured269

gray in Figure 6.1, were detected where υ1/υ2 = 1. At the locking points, the quasi-periodic270

orbit degrades into the limit cycle in phase quadrature. Near locking, the corresponding271

torus becomes challenging to compute numerically; see the loss of accuracy along the red272

curve on the right of Figure 6.1(b).273

13It is not possible to use DDE-Biftool to automatically continue the quasi-periodic orbit from the
torus bifurcation that occurs when a limit cycle changes stability. Dombóvári and Stépán [11] point out
that saddle-like invariant sets are especially difficult to find for DDEs because the standard trick of tracking
solutions along reversed time cannot be used. Their algorithm is not straightforward to implement, and
success is dependent on the accuracy of the initial solution profile estimates and on stability properties of
the solution in question.

14Note that system (2.1) is symmetric in x1 and x2, whereas the quasi-periodic orbits branch out from
the in-phase solution where x1(t) ≡ x2(t).

15The amplitude and phase shift were determined based on taking a section θ1 = mod(υ1θ/υ2, 2π),
θ2 = mod(υ2θ/υ1, 2π) of the torus with θ ∈ [0, 2π], and then using the same amplitude and phase measures
for x1(t) and x2(t) as for limit cycles with period T = 2π.
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An approximation of the locking point was continued in the (a, τ) plane by establish-274

ing a numerical condition on higher harmonics along both dimensionless time coordinates.275

These harmonics were determined by discrete Fourier transform (DFT), in which the cor-276

responding derivatives with respect to present states, retarded states and parameters were277

determined analytically to give a well conditioned two parameter continuation scheme. This278

continuation scheme is detailed in Appendix D. The numerical locking points lie closer to279

the branch of limit cycles in phase quadrature (blue curve) when a = −0.29 than for when280

a = 0.34.281

The results in this section provide further information about the global dynamic be-282

haviour of the HKB system (2.1), that could not be obtained by the analytic methods283

presented in previous sections.284

7. Conclusions. In this paper, we discussed the effects of delay on the Haken-Kelso-285

Bunz (HKB) model [15] of bimanual human motor coordination. We investigated the286

stability of the trivial solutions in the corresponding linear system (2.4), which can be287

written as a delayed oscillator where the feedback changes the damping. We discovered288

Hopf and double Hopf bifurcations in this linear delayed HKB model. We analysed the289

double Hopf bifurcations in the full HKB system (2.1) by means of centre manifold re-290

duction [15] to calculate the stability of both in-phase and anti-phase limit cycles and291

quasi-periodic orbits. We verified our results using numerical continuation. In addition,292

we discovered limit cycles in phase quadrature and 1-1 locking of quasi-periodic orbits. We293

have shown that in-phase and the anti-phase limit cycles can be replaced by a phase-lagged294

solution via a pitchfork bifurcation of periodic orbits. This phase lagged solution has tran-295

sitioned from the quasi-periodic branch which emerges from the double Hopf bifurcation296

point. This suggests that double frequency transient transitioning is needed to change from297

in-phase to anti-phase limit cycles, while the phase-lagged solution is reached by increasing298

the linear coupling coefficient a. The results provide valuable insights into the nonlinear299

dynamic behaviour of this model, which may help determine the relevance of the delayed300

HKB system to the application of the mirror game for early diagnosis of disorders such as301

schizophrenia [37]. Furthermore, we suggest that the methods we have presented may be302

valuable to assess the corresponding suitability of other delayed models of human motor303

coordination, such as the variation of the delayed HKB system presented by S lowiński et304

al. [34], which incorporates a neurologically motivated coupling term.305
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Appendix A. Stability charts. Equation (3.1) has the trivial solution η(t) = 0. We306

want to find conditions under which this solution is stable. If this solution becomes unstable307

via a Hopf bifurcation, we would expect to find finite amplitude limit cycles, corresponding308

to observable oscillations in the full HKB system (2.1). The characteristic equation of (3.1)309

is given by310

(A.1) λ2 − (γ + a)λ+ ω2 = ∓aλe−λτ .311

The solution η(t) = 0 of (3.1) is stable when Re(λ) < 0.312

When τ ̸= 0, (A.1) is an exponential polynomial in λ, which has an infinite number of313

roots (either real or complex conjugate). If any of these roots have positive real part, then314

the steady state η(t) = 0 is unstable.315

From Kuang [25, Theorem 1.4, p. 66 & Section 3.3], we know that stability changes316

(or boundaries) occur when the root with the largest real part is purely imaginary. The317

locations in parameter space where such roots exist can be found by substituting λ = iν,318

where ν ≥ 0 is real, into (A.1) and equating real and imaginary parts, to give319

(A.2)
ω2 − ν2 ± aν sin(ντ) = 0,

−(γ + a)ν ± aν cos(ντ) = 0.
320

Note that ν = 0 is a solution of (A.2) when ω = 0. Hence we take ν > 0 in the sequel.321

From (A.2) we obtain a quartic expression in ν,322

(A.3) ν4 +
(

(γ + a)2 − a2 − 2ω2
)
ν2 + ω4 = 0,323

which has roots324

(A.4) ν2± =
1

2

(
a2 + 2ω2 − (γ + a)2 ±

√
(a2 + 2ω2 − (γ + a)2)2 − 4ω4

)
.325

Since ν± must be real, we have λ± = iν±, ν+ > ν− > 0 provided that326

(A.5)
(a) a2 + 2ω2 − (γ + a)2 > 0,

(b) (a2 + 2ω2 − (γ + a)2)2 > 4ω4,
327

with no solutions otherwise.328

The real parts of the rightmost eigenvalues either become positive (instability) or neg-329

ative (stability) when parameters such as τ change. But we do not know in which direction330

the eigenvalues move. To determine this direction, the sign of the derivative of Re (λ (τ))331

with respect to τ needs to be found at the point where λ (τ) is purely imaginary. So we332

calculate the sign of ρτ , given by333

(A.6) ρτ := Re

(
dλ

dτ

∣∣∣∣
λ=iν

)
.334

It turns out to be more convenient to calculate the inverse of ρτ , as only its sign matters.335

By differentiating the characteristic equation (A.1), we obtain336

(A.7)

(
dλ

dτ

)−1

=
± (2λ− (γ + a)) eλτ + a

aλ2
− τ

λ
.337
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Then substituting the expression for eλτ obtained from (A.1) into (A.7), and using (A.4),338

we have339

(A.8)

signρτ = sign

[
Re

((
dλ

dτ

)−1∣∣∣∣
λ=iν±

)]
= sign

(
±
√

(a2 + 2ω2 − (γ + a)2)2 − 4ω4
)
.340

Thus ρτ > 0 (eigenvalues crossing the imaginary axis from left to right with increasing τ)341

occurs for τ corresponding to ν+ and ρτ < 0 (eigenvalues crossing the imaginary axis from342

right to left with increasing τ) occurs for τ corresponding to ν−. We find these values of τ343

from (A.2), by setting344

(A.9)

τn,1 =
θ1
ν+

+
2nπ

ν+

τn,2 =
θ2
ν−

+
2nπ

ν−

345

for n ∈ Z where θ1,2 ∈ [0, 2π) are given by346

cos(θ1) = ±γ + a

a
,

sin(θ1) = ±
ν2+ − ω2

aν+
,

cos(θ2) = ±γ + a

a
,

sin(θ2) = ±
ν2− − ω2

aν−
.

(A.10)347

Kuang’s theorem [25, Theorem 1.4, p. 66] allows us to consider the eigenvalues λ as a348

continuous function of τ . Then the stability of the solution η(t) = 0 of (3.1) for τ > 0 can349

be found by looking at the stability of the system at τ = 0.350

If η(t) = 0 is stable when τ = 0, then τ0,1 < τ0,2 because the multiplicity of roots with351

positive real part cannot become negative. Additionally, we have that352

(A.11) τn+1,1 − τn,1 =
2π

ν+
<

2π

ν−
= τn+1,2 − τn,2.353

This means that there can only be a finite number of switches between stability and insta-354

bility. Specifically, there are k switches from stability to instability to stability when355

(A.12) τ0,1 < τ0,2 < τ1,1 < · · · < τk−1,1 < τk−1,2 < τk,1 < τk+1,1 < τk,2 < · · · .356

If η(t) = 0 is unstable when τ = 0, then it is either unstable for τ > 0, or a finite357

number of stability switches occur; k switches from instability to stability to instability358

may occur when359

(A.13) τ0,2 < τ0,1 < τ1,2 < · · · < τk−1,2 < τk−1,1 < τk,1 < τk,2 < · · · .360

It is straightforward to show that this condition is satisfied for (3.1). This means that361

stability changes occur according to (A.13) when the system is unstable at τ = 0.362

Stability charts in parameter spaces (a, τ) and (γ, τ) (Figures 3.2 and 3.3) are obtained363

by treating (A.9) and (A.10) as functions of a and γ, respectively, and carefully checking364
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the conditions in (A.12) and (A.13) to see if the resulting curves correspond to stability365

changes.366

The above analysis has to be extended when we examine stability in (γ, a) parameter367

space for fixed τ . We adapt Kuang’s [25] analysis to derive a parameterisation of the368

Re(λ) = 0 curves directly. Rearranging (A.2), we get expressions for a and γ in terms of ν369

as370

(A.14)

a = ± ν2 − ω2

ν sin(ντ)
,

γ =
ν2 − ω2

ν sin(ντ)
(cos(ντ) ∓ 1) ,

371

for ντ ̸= nπ, n ∈ Z.372

When ντ = nπ, n ∈ Z, we have ν = ω from the first equation of (A.2). The second373

equation then gives374

(A.15) γ = a(±(−1)n − 1) for ω ̸= 0.375

We now return to (A.1) and look at the sign of Re

((
dλ
dγ

)−1
)

evaluated on the curves376

given by (A.14) and (A.15). We find that377

(A.16) Re

((
dλ

dγ

)−1∣∣∣∣
λ=iν

)
= 1 +

ω2

ν2
− (γ + a)τ =: ξ.378

In addition it is useful to look at da
dγ to see how the change of sign of (A.16) relates to the379

curves given by (A.14). We find380

(A.17)
da

dγ
=

ξ
γ
aξ − aτ sin2(ντ)

,381

where ξ is defined in (A.16). Hence da
dγ = 0 if and only if ξ = 0, for a ̸= 0. Therefore,382

the points in parameter space where the eigenvalues change direction correspond to the383

turning points of the Re(λ) = 0 curves in (γ, a) space.384
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Appendix B. Centre manifold reduction. First we will outline the method for385

calculating the normal form of a generic Hopf bifurcation of a DDE system using centre386

manifold theory and then apply this to find the normal form of the double Hopf bifurcations387

of the delayed HKB system. The approach given here is outlined by several authors [7, 19,388

28]). The detailed theory is discussed by Hale and Verduyn Lunel [16].389

This analysis applies to retarded delay differential equations with constant delay τ > 0.390

Consider a general delay differential equation of this type,391

(B.1) ẋ(t) = g(x(t),x(t− τ);µ),392

where x ∈ Rn, g : Rn × Rn × Rk → Rn, n, k ∈ Z+, and µ ∈ Rk and τ > 0 are parameters393

in the model. We assume that g is sufficiently smooth for the required computations and394

that the equation admits an equilibrium solution x∗ which is independent of τ . By shifting395

the equilibrium to zero and separating linear and nonlinear terms, (B.1) can be written in396

the form397

(B.2) ẋ(t) = A0(µ)x(t) +A1(µ)x(t− τ) + f(x(t),x(t− τ);µ),398

where Aj(µ) = Dj+1g(x∗,x∗;µ) is the Jacobian of g with respect to its (j+1)th argument,399

and400

(B.3) f(x(t),x(t− τ);µ) = g(x(t),x(t− τ);µ) −A0(µ)x(t) −A1(µ)x(t− τ).401

The characteristic equation of (B.1) is then given by402

(B.4) det(∆(λ;µ)) = det(λIn×n −A0(µ) −A1(µ)e−λτ ) = 0,403

where In×n is the n× n identity matrix.404

The following analysis applies to critical parameter values µ = µc where the character-405

istic equation (B.4) has m > 0 roots with zero real part, and the rest of the eigenvalues have406

negative real parts. We assume that the eigenvalues with zero real part have multiplicity407

one, which covers single and double Hopf bifurcations.408

To make progress with centre manifold construction, the operator differential equation409

representation of the DDE is required. Writing (B.2) as an evolution equation on the410

Banach space B of continuously differentiable functions from [−τ, 0] to Rn gives411

(B.5) ẋt = Axt + F(xt),412

where xt ∈ B is defined by413

(B.6) xt(θ) = x(t+ θ), θ ∈ [−τ, 0],414

the linear operator A is defined by415

Aϕ(θ) =

{
d
dθϕ(θ), θ ∈ [−τ, 0),

A0(µc)ϕ(0) +A1(µc)ϕ(−τ), θ = 0,
(B.7)416

417
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and the nonlinear operator is418

F(ϕ)(θ) =

{
0, θ ∈ [−τ, 0),

f(ϕ(0), ϕ(−τ);µc), θ = 0.
(B.8)419

420

For the nonlinear calculations, it will be useful to define the operators421

L(ϕ) = A0(µc)ϕ(0) +A1(µc)ϕ(−τ),

F(ϕ) = f(ϕ(0), ϕ(−τ);µc).
(B.9)422

423

The following calculations will also require the dual space B∗ of continuously differen-424

tiable functions on [0, τ ] to Rn∗ (the n-dimensional row vectors), an adjoint operator425

A∗ψ(ξ) =

{
− d

dξψ(ξ), ξ ∈ (0, τ ],

ψ(0)A0(µc) + ψ(τ)A1(µc), ξ = 0,
(B.10)426

427

where we have assumed A0(µc) and A1(µc) are real, and the bilinear form ( , ) : B∗×B → R428

given by429

(B.11) (ψ, ϕ) = ψ(0)ϕ(0) +

∫ 0

−τ
ψ(σ + τ)A1(µc)ϕ(σ)dσ.430

The adjoint operator and bilinear form allow a projection of the solution to the DDE at431

the critical parameter values onto the centre manifold to be constructed. As with the ODE432

case, a first order approximation is constructed by considering the linear problem. Here433

the solution space can be decomposed as B = C
⊕

S where C is an m-dimensional solution434

space spanned by the solutions corresponding to the eigenvalues with zero real part, S is435

infinite dimensional, and both C and S are invariant under the flow of the linear system.436

These are analogous to the centre and stable eigenspaces for ODEs.437

Let {ϕ1, ϕ2, . . . , ϕm} be the basis for C, with corresponding eigenvalues {λ1, λ2, . . . , λm}.438

Note that the eigenvalues of A are the same as the roots of the characteristic equation given439

by (B.4). It was shown in Appendix A that λk = iνk with νk ̸= 0, therefore attention will440

be restricted to the case where all of the eigenvalues take this form. If λk = iνk is a root441

of (B.4), then so is −iνk. The eigenvalues are labelled so that λk+1 = −iνk, where νk > 0442

and k is odd.443

We find the basis for the centre eigenspace as follows. Consider a complex eigenfunction444

Φk ∈ B corresponding to eigenvalue iνk which satisfies ∀θ ∈ [−τ, 0] that445

(B.12) AΦk(θ) = iνkΦk(θ).446

Separating into real and imaginary parts gives447

Aϕk(θ) = −νkϕk+1(θ),

Aϕk+1(θ) = νkϕk(θ),
(B.13)448

449
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where Φk(θ) = ϕk(θ) + iϕk+1(θ). For convenience, the basis shall be written as an n ×m450

matrix, defined as451

(B.14) Φ(θ) =
[
ϕ1(θ) ϕ2(θ) · · · ϕm(θ)

]
.452

Using the definition of A, given by (B.7), it can be shown that453

(B.15) Φ′(θ) = Φ(θ)B,454

where B is a block diagonal m×m matrix with blocks455

(B.16) Bk =

[
0 νk

−νk 0

]
456

for every pair of complex conjugate eigenvalues ±iνk. It also follows from the definition of457

A that458

(B.17) A0(µc)Φ(0) +A1(µc)Φ(−τ) = Φ(0)B.459

Solving (B.15) with boundary condition (B.17) gives460

ϕk(θ) = Re(eiνkθvk),

ϕk+1(θ) = Im(eiνkθvk),
(B.18)461

462

where vk satisfies ∆(iνk;µc)vk = 0, and ∆(; ) is given in (B.4).463

The basis464

(B.19) Ψ(ξ) =

ψ1(ξ)
...

ψm(ξ)

465

for the adjoint can be found in a similar way by deriving and solving466

Ψ′(ξ) = BΨ(ξ)

Ψ(0)A0(µc) + Ψ(τ)A1(µc) = −BΨ(0).
(B.20)467

468

Note that the construction of A∗ ensures that the eigenvalues of A∗ are the same as469

the eigenvalues of A, which is made explicit by considering eigenfunctions of the form470

ψ(ξ) = we−λξ, w ∈ Rn∗. Here we label the eigenfunction in B with eigenvalue iν in the471

same way as the eigenfunction in B∗ with the same eigenvalue.472

Solving (B.20) yields473

ψk(ξ) = Re(wke−iνkξ),

ψk+1(ξ) = Im(wke−iνkξ),
(B.21)474

475

where wk∆(iνk;µc) = 0. Using the remaining degrees of freedom, the bases can be chosen476

such that (Ψ,Φ) = Im×m, where (Ψ,Φ) is the matrix with i, j elements (ψi, ϕj). Note477
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that Ψ may be used to decompose the solution space because for any ζ ∈ S, (ψj , ζ) = 0478

for j = 1, . . . ,m.479

Now the nonlinear terms shall be considered. The local centre manifold W c
loc of the480

equilibrium at 0 can be expressed as the sum of a linear part belonging to C and a nonlinear481

part belonging to S,482

(B.22) W c
loc = {ϕ ∈ B | ϕ = Φu + h(u)},483

where Φ is the basis given by (B.14), u ∈ Rm, Φu ∈ C, h(u) ∈ S and ∥u∥ is sufficiently484

small. Thus the solutions x(t) to (B.2) on the centre manifold satisfy x(t) = xt(0) where485

(B.23) xt(θ) = Φ(θ)u(t) + h(θ,u(t)).486

Substituting (B.23) into (B.5) and using (B.15) and (B.17) gives a coupled system of PDEs487

which must be solved for u(t) and h(θ,u(t)),488 (
Φ(θ) +

∂h

∂u
(θ,u(t))

)
u̇(t)

=

{
Φ(θ)Bu(t) + ∂h

∂θ (θ,u(t)), θ ∈ [−τ, 0),

Φ(0)Bu(t) + L
(
h(u(t))

)
+ F

(
Φu(t) + h(u(t))

)
, θ = 0.

(B.24)489

490

where L and F are defined in (B.9), and we used the notation h(u(t)) to refer to h as a491

function in S for given u(t). The equation for u(t) can now be derived using the bilinear492

form (B.11). Firstly, since h(u(t)) ∈ S,493

(B.25)
(
Ψ,h(u(t))

)
= 0.494

Taking the partial derivative with respect to u yields495

(B.26)

(
Ψ,

∂h

∂u
(u(t))

)
= 0.496

Using the equations given in (B.9) and (B.20), it can be shown that497

Ψ(0)L
(
h(u(t))

)
+

∫ 0

−τ
Ψ(σ + τ)A1(µc)

∂h

∂σ
(σ,u(t))dσ,

= Ψ(0)A0(µc)h(0,u(t)) + Ψ(τ)A1(µc)h(0,u(t))

−
∫ 0

−τ
Ψ′(σ + τ)A1(µc)h(σ,u(t))dσ,

= −BΨ(0)h(0,u(t)) −
∫ 0

−τ
BΨ(σ + τ)A1(µc)h(σ,u(t))dσ,

= −B (Ψ,h(u(t)))

= 0.

(B.27)498

499
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Therefore, the bilinear form (B.11) applied to Ψ and (B.24) gives500

(B.28) u̇(t) = Bu(t) + Ψ(0)F
(
Φu(t) + h(u(t))

)
.501

Substituting this into (B.24) gives a system of PDEs for h(θ,u(t)),502

(B.29)

∂h

∂u
(θ,u(t))

(
Bu(t) + Ψ(0)F

(
Φu(t) + h(u(t))

))
+ Φ(θ)Ψ(0)F

(
Φu(t) + h(u(t))

)
=

{
∂h
∂θ (θ,u(t)), θ ∈ [−τ, 0),

L
(
h(u(t))

)
+ F

(
Φu(t) + h(u(t))

)
, θ = 0.

503

Standard centre manifold techniques can be used to solve (B.29), expanding h(u) and F504

as power series in u and equating coefficients. Substituting the result into (B.28) and505

expanding the right-hand side in powers of u gives the equation for the flow on the centre506

manifold. To compute the normal form for the double Hopf bifurcation, however, it is507

not necessary to solve the PDE, because the coefficients of expressions up to and including508

cubic terms allow the normal form for the bifurcation to be identified directly using formulas509

available in the literature, which we now discuss.510

A double Hopf bifurcation is a codimension-2 bifurcation, meaning it requires two511

parameters µ1,2 to analyse its unfolding. Let µ1 = µ1c and µ2 = µ2c at the bifurcation512

point. The normal form of the double Hopf bifurcation can be expressed in polar form in513

terms of two amplitudes r1, r2, and two phase angles φ1, φ2 [28] as514

(B.30)
ṙ1 = b1r1 +

(
a11r

2
1 + a12r

2
2

)
r1,

ṙ2 = b2r2 +
(
a21r

2
1 + a22r

2
2

)
r2,

515

and516

(B.31)
φ̇1 = ν1 + c11r

2
1 + c12r

2
2,

φ̇2 = ν2 + c21r
2
1 + c22r

2
2,

517

where r1,2 ∈ R, r1,2 > 0 and φ1,2 ∈ R. The parameters ajk and cjk, j, k ∈ {1, 2} are518

known as the normal form coefficients. These can be calculated using formulae derived by519

[24] from the coefficients of u in (B.28) after (B.29) has been solved for h and the right-520

hand side has been expanded in powers of u. The coefficients bj , j ∈ {1, 2} are unfolding521

parameters.16 The unfolding parameters can be approximated by linear functions of the522

bifurcations parameters [28],523

(B.32)
b1 = ρ11 (µ1 − µ1c) + ρ12 (µ2 − µ2c) ,

b2 = ρ21 (µ1 − µ1c) + ρ22 (µ2 − µ2c) ,
524

where525

(B.33) ρjk = Re

 ∂λ

∂µk

∣∣∣∣∣
iνj

 ,526

16Not to be confused with the parameter b in the delayed HKB equation, the unfolding parameters will
always have 1 or 2 as a subscript.
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which can be calculated by differentiating the characteristic equation (B.4); see Appen-527

dix A. The focus of our analysis will be on the amplitudes r1, r2, which allow the existence528

and stability of the limit cycle near the bifurcation point to be investigated.529
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Appendix C. Resonances.530

The analysis presented in this paper assumes no resonant phenomena. We address the531

possibility of internal resonances in the delayed HKB model (2.1) here. The system has a532

k1 : k2 resonance if ν1
ν2

= k1
k2

for k1, k2 ∈ Z+. If k1 and k2 are relatively prime integers and533

k1 + k2 > 4 then the resonance is said to be weak, and no change to the normal form is534

required because the leading-order nonlinearities remain the same as for the non-resonant535

case [27]. A change to the normal form is required if k1 + k2 ≤ 4.536

By comparing ν(i) and ν(a) at the double Hopf points, it is straightforward to show537

that if resonance occurs, it will be weak. The possibility of weak resonance should be538

investigated so that we can distinguish between resonant and non-resonant behaviour.539

Examples of weakly resonant and non-resonant behaviour that can arise at double Hopf540

bifurcations are presented by Ma et al. [27].541

Ma et al. [27] outline a method for finding the parameter values for which a k1 : k2 reso-542

nant double Hopf bifurcation occurs. In the case of the delayed HKB equation, determining543

whether the double Hopf bifurcations found for specific parameter values correspond to res-544

onances is not straightforward due to the complex expression for the frequencies ν, given545

by (A.4). The relevant equations for finding the double Hopf bifurcations were solved546

numerically. Without analytic expressions for the parameter values at the double Hopf547

point, it cannot be determined with certainty that resonance is not present. However, by548

comparing ν(i) and ν(a), k1 : k2 resonance can be ruled out in a finite number of cases. For549

example, for each of the double Hopf bifurcations found in the previous section, there is550

no k1 : k2 resonance for k1, k2 ∈ {1, 2, . . . , 1000}.551

Experimentally, there is no evidence of resonance phenomena, nor are resonance phe-552

nomena mentioned by S lowiński et al. [36] who used the same parameter values. If ex-553

periments in the future suggest the existence of resonant phenomena for physiologically554

relevant parameter values, the exact parameter values which cause this can be found using555

the approach outlined by Ma et al. [27]. However, without evidence of the phenomenon,556

resonance need not be discussed further here.557
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Appendix D. Two-parameter continuation of invariant tori near locking.558

The quasi-periodic orbits have been computed using the 2D collocation algorithm in559

[11, 28], based on the method introduced in [31]. In what follows, we describe some of560

the trade-offs associated with this method when it is used to continue quasi-periodic orbits561

near locking.562

The numerical continuation of quasi-periodic branches involves significantly higher er-563

rors when passing through resonances [32]. This is the case in Figure 6.1 near the 1:1564

strong resonance (locking) points (grey dots) where the quasi-periodic orbit collapses to565

the period-one limit cycle in phase quadrature (note the loss of accuracy along the red566

dashed lines). We can write the governing equation (2.1) in the form u̇ = f(u,uτ ,µ)567

with u =
[
x1 x2 ẋ1 ẋ2

]⊤
and uτ := u(t − τ). Computing and storing the invariant568

tori profiles u(θ1, θ2) at a given bifurcation parameter µ becomes increasingly difficult as569

the required resolution increases. The numerical computation of quasi-periodic branches570

breaks down near the 1:1 strong resonance as it becomes increasingly difficult to satisfy571

the invariance relations [31]572

υ1
∂u

∂θ1
+ υ2

∂u

∂θ2
− f(u,uτ ,µ) = 0,

u(0, θ2) − u(2π, θ2) = 0,

u(θ1, 0) − u(θ1, 2π) = 0,〈
∂u

∂θk
,u

〉
= 0, k = 1, 2,

Γ(u,uτ , υk,µ) = 0, k = 1, 2.

(D.1)573

574

The function Γ is given below. Pseudo-arclength [10] continuation is used to solve (D.1),575

supplemented with arclength condition. Equation (D.1) is evaluated over a Chebyshev576

quadrature [31]. It is not entirely clear why the breakdown of the numerical scheme arises577

around strong locking [32].578

Since the locking point is unreachable by continuation, approximate two-parameter579

µ := [a τ ]⊺ near-locking branches - grey curves in Figure 6.1(a) - were continued using the580

following discretization of the invariance scheme (D.1). For this two-parameter continua-581

tion, the function Γ is defined based on the fact that the numerical scheme will eventually582

disperse close to the 1:1 resonance, with ripples propagating higher than the P
th

harmonics583

on the invariant torus profile given by584

u(θ1, θ2) := ∁N,M
i=1,j=1ui,j(θ1, θ2),

ui,j(θ1, θ2) =

P∑
p=0

P∑
q=0

ui,j,p,qPp,q(ϵi(θ1), ϵj(θ2)),

Pp,q(ϵi(θ1), ϵj(θ2)) := Pp(ϵi(θ1))Pq(ϵj(θ2)),

Pk(ϵ) :=

P∏
m=0,m ̸=k

Pϵ−m

k −m
, ϵi(θ1) :=

θ1−θ1,i
∆θ1

, ϵj(θ2) :=
θ2−θ2,j
∆θ2

,

(D.2)585
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over the mesh θ1,i := (i− 1)∆θ1 and θ2,j := (j− 1)∆θ2, where ∁ denotes the concatenation586

of segmented 2D polynomial surfaces ui,j .587

The different harmonics k and l in the spectrum are defined on the velocity profile u̇k588

of the invariant tori over both coordinates as589

U1,k(θ2) :=

∫ 2π

0
u̇(θ1, θ2)e

ik2πθ1dθ1, U2,l(θ1) :=

∫ 2π

0
u̇(θ1, θ2)e

il2πθ2dθ2.(D.3)590

The main idea behind continuing near the locking curve is to lock on the relative error ∆591

between the main harmonics and the cumulated higher ones as592

(D.4) Γ :=

(∑
K=1,2 SK,1 −

∑
K=1,2

∑N
L=P+1 SK,L∑

K=1,2 SK,1

)2

− ∆2,593

with594

(D.5) S1,k :=

∫ 2π

0
UH

1,k(θ2)U1,k(θ2)dθ2, S2,l :=

∫ 2π

0
UH

2,l(θ1)U2,l(θ1)dθ1.595

Corresponding derivatives can be computed using the chain rule and Newton-Raphson596

correction can be performed quite effectively.597
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